Processing math: 100%
Subalgebra 3A11C13
14 out of 16
Computations done by the calculator project.

Subalgebra type: 3A11 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from 2A11 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: C13

Elements Cartan subalgebra scaled to act by two by components: A11: (2, 2, 1): 2, A11: (0, 2, 1): 2, A11: (0, 0, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 9.
Negative simple generators: g9, g7, g3
Positive simple generators: g9, g7, g3
Cartan symmetric matrix: (200020002)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (200020002)
Decomposition of ambient Lie algebra: V2ω3Vω2+ω3Vω1+ω3V2ω2Vω1+ω2V2ω1
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra.
Highest vectors of representations (total 6) ; the vectors are over the primal subalgebra.g9g8g7g6g5g3
weight2ω1ω1+ω22ω2ω1+ω3ω2+ω32ω3
Isotypic module decomposition over primal subalgebra (total 6 isotypic components).
Isotypical components + highest weightV2ω1 → (2, 0, 0)Vω1+ω2 → (1, 1, 0)V2ω2 → (0, 2, 0)Vω1+ω3 → (1, 0, 1)Vω2+ω3 → (0, 1, 1)V2ω3 → (0, 0, 2)
Module label W1W2W3W4W5W6
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. Semisimple subalgebra component.
g9
h3+2h2+2h1
2g9
g8
g1
g1
g8
Semisimple subalgebra component.
g7
h3+2h2
2g7
g6
g4
g4
g6
g5
g2
g2
g5
Semisimple subalgebra component.
g3
h3
2g3
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above2ω1
0
2ω1
ω1+ω2
ω1+ω2
ω1ω2
ω1ω2
2ω2
0
2ω2
ω1+ω3
ω1+ω3
ω1ω3
ω1ω3
ω2+ω3
ω2+ω3
ω2ω3
ω2ω3
2ω3
0
2ω3
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer2ω1
0
2ω1
ω1+ω2
ω1+ω2
ω1ω2
ω1ω2
2ω2
0
2ω2
ω1+ω3
ω1+ω3
ω1ω3
ω1ω3
ω2+ω3
ω2+ω3
ω2ω3
ω2ω3
2ω3
0
2ω3
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.M2ω1M0M2ω1Mω1+ω2Mω1+ω2Mω1ω2Mω1ω2M2ω2M0M2ω2Mω1+ω3Mω1+ω3Mω1ω3Mω1ω3Mω2+ω3Mω2+ω3Mω2ω3Mω2ω3M2ω3M0M2ω3
Isotypic characterM2ω1M0M2ω1Mω1+ω2Mω1+ω2Mω1ω2Mω1ω2M2ω2M0M2ω2Mω1+ω3Mω1+ω3Mω1ω3Mω1ω3Mω2+ω3Mω2+ω3Mω2ω3Mω2ω3M2ω3M0M2ω3

Semisimple subalgebra: W_{1}+W_{3}+W_{6}
Centralizer extension: 0

Weight diagram. The coordinates corresponding to the simple roots of the subalgerba are fundamental.
The bilinear form is therefore given relative to the fundamental coordinates.
Canvas not supported




Mouse position: (0.00, 0.00)
Selected index: -1
Coordinate center in screen coordinates:
(200.00, 300.00)
The projection plane (drawn on the screen) is spanned by the following two vectors.
(1.00, 0.00, 0.00)
(0.00, 1.00, 0.00)
0: (1.00, 0.00, 0.00): (250.00, 300.00)
1: (0.00, 1.00, 0.00): (200.00, 350.00)
2: (0.00, 0.00, 1.00): (200.00, 300.00)




Made total 444 arithmetic operations while solving the Serre relations polynomial system.