Highest vectors of representations (total 6) ; the vectors are over the primal subalgebra. | g9 | g8 | g7 | g6 | g5 | g3 |
weight | 2ω1 | ω1+ω2 | 2ω2 | ω1+ω3 | ω2+ω3 | 2ω3 |
Isotypical components + highest weight | V2ω1 → (2, 0, 0) | Vω1+ω2 → (1, 1, 0) | V2ω2 → (0, 2, 0) | Vω1+ω3 → (1, 0, 1) | Vω2+ω3 → (0, 1, 1) | V2ω3 → (0, 0, 2) | |||||||||||||||||||||||||||
Module label | W1 | W2 | W3 | W4 | W5 | W6 | |||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Semisimple subalgebra component.
|
| Semisimple subalgebra component.
|
|
| Semisimple subalgebra component.
| |||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | 2ω1 0 −2ω1 | ω1+ω2 −ω1+ω2 ω1−ω2 −ω1−ω2 | 2ω2 0 −2ω2 | ω1+ω3 −ω1+ω3 ω1−ω3 −ω1−ω3 | ω2+ω3 −ω2+ω3 ω2−ω3 −ω2−ω3 | 2ω3 0 −2ω3 | |||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | 2ω1 0 −2ω1 | ω1+ω2 −ω1+ω2 ω1−ω2 −ω1−ω2 | 2ω2 0 −2ω2 | ω1+ω3 −ω1+ω3 ω1−ω3 −ω1−ω3 | ω2+ω3 −ω2+ω3 ω2−ω3 −ω2−ω3 | 2ω3 0 −2ω3 | |||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | M2ω1⊕M0⊕M−2ω1 | Mω1+ω2⊕M−ω1+ω2⊕Mω1−ω2⊕M−ω1−ω2 | M2ω2⊕M0⊕M−2ω2 | Mω1+ω3⊕M−ω1+ω3⊕Mω1−ω3⊕M−ω1−ω3 | Mω2+ω3⊕M−ω2+ω3⊕Mω2−ω3⊕M−ω2−ω3 | M2ω3⊕M0⊕M−2ω3 | |||||||||||||||||||||||||||
Isotypic character | M2ω1⊕M0⊕M−2ω1 | Mω1+ω2⊕M−ω1+ω2⊕Mω1−ω2⊕M−ω1−ω2 | M2ω2⊕M0⊕M−2ω2 | Mω1+ω3⊕M−ω1+ω3⊕Mω1−ω3⊕M−ω1−ω3 | Mω2+ω3⊕M−ω2+ω3⊕Mω2−ω3⊕M−ω2−ω3 | M2ω3⊕M0⊕M−2ω3 |