Highest vectors of representations (total 6) ; the vectors are over the primal subalgebra. | \(g_{9}\) | \(g_{8}\) | \(g_{7}\) | \(g_{6}\) | \(g_{5}\) | \(g_{3}\) |
weight | \(2\omega_{1}\) | \(\omega_{1}+\omega_{2}\) | \(2\omega_{2}\) | \(\omega_{1}+\omega_{3}\) | \(\omega_{2}+\omega_{3}\) | \(2\omega_{3}\) |
Isotypical components + highest weight | \(\displaystyle V_{2\omega_{1}} \) → (2, 0, 0) | \(\displaystyle V_{\omega_{1}+\omega_{2}} \) → (1, 1, 0) | \(\displaystyle V_{2\omega_{2}} \) → (0, 2, 0) | \(\displaystyle V_{\omega_{1}+\omega_{3}} \) → (1, 0, 1) | \(\displaystyle V_{\omega_{2}+\omega_{3}} \) → (0, 1, 1) | \(\displaystyle V_{2\omega_{3}} \) → (0, 0, 2) | |||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | |||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Semisimple subalgebra component.
|
| Semisimple subalgebra component.
|
|
| Semisimple subalgebra component.
| |||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(\omega_{1}+\omega_{2}\) \(-\omega_{1}+\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}-\omega_{2}\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | \(\omega_{1}+\omega_{3}\) \(-\omega_{1}+\omega_{3}\) \(\omega_{1}-\omega_{3}\) \(-\omega_{1}-\omega_{3}\) | \(\omega_{2}+\omega_{3}\) \(-\omega_{2}+\omega_{3}\) \(\omega_{2}-\omega_{3}\) \(-\omega_{2}-\omega_{3}\) | \(2\omega_{3}\) \(0\) \(-2\omega_{3}\) | |||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(\omega_{1}+\omega_{2}\) \(-\omega_{1}+\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}-\omega_{2}\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | \(\omega_{1}+\omega_{3}\) \(-\omega_{1}+\omega_{3}\) \(\omega_{1}-\omega_{3}\) \(-\omega_{1}-\omega_{3}\) | \(\omega_{2}+\omega_{3}\) \(-\omega_{2}+\omega_{3}\) \(\omega_{2}-\omega_{3}\) \(-\omega_{2}-\omega_{3}\) | \(2\omega_{3}\) \(0\) \(-2\omega_{3}\) | |||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}}\oplus M_{-\omega_{1}+\omega_{2}}\oplus M_{\omega_{1}-\omega_{2}}\oplus M_{-\omega_{1}-\omega_{2}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{\omega_{1}+\omega_{3}}\oplus M_{-\omega_{1}+\omega_{3}}\oplus M_{\omega_{1}-\omega_{3}}\oplus M_{-\omega_{1}-\omega_{3}}\) | \(\displaystyle M_{\omega_{2}+\omega_{3}}\oplus M_{-\omega_{2}+\omega_{3}}\oplus M_{\omega_{2}-\omega_{3}}\oplus M_{-\omega_{2}-\omega_{3}}\) | \(\displaystyle M_{2\omega_{3}}\oplus M_{0}\oplus M_{-2\omega_{3}}\) | |||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}}\oplus M_{-\omega_{1}+\omega_{2}}\oplus M_{\omega_{1}-\omega_{2}}\oplus M_{-\omega_{1}-\omega_{2}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{\omega_{1}+\omega_{3}}\oplus M_{-\omega_{1}+\omega_{3}}\oplus M_{\omega_{1}-\omega_{3}}\oplus M_{-\omega_{1}-\omega_{3}}\) | \(\displaystyle M_{\omega_{2}+\omega_{3}}\oplus M_{-\omega_{2}+\omega_{3}}\oplus M_{\omega_{2}-\omega_{3}}\oplus M_{-\omega_{2}-\omega_{3}}\) | \(\displaystyle M_{2\omega_{3}}\oplus M_{0}\oplus M_{-2\omega_{3}}\) |